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Answer all the questions  
 Marks 
     

1. (a) 4 13 siny x x−= , where 
2 2

xπ π− ≤ ≤ .  Find an expression for 
dy
dx

.  
3 

    
 

(b) Find an expression for ( )f x′  when 
5

2
3( )

x
xf x

e
−= .  

3 
    
    

Use Gaussian elimination to solve this system of equations 
 

2. 

 

 

5 
    
    
3. A curve is defined by the parametric equations   
    
 23 8x t= +   and  27 3y t t= − −    
    
 for all t.  Find the equation of the tangent to the curve when t = 2.  5 
    
    
4. An arithmetic series and a geometric series both have terms 3 6u =  and 5 14u = .  A second 

geometric series with the term 2 135v =  and common ratio r has a sum to infinity equal to 
the sum of the first 20 terms of the arithmetic series. 
Calculate the possible values for the common ratio, r, of the second geometric series. 

 

6 
    
    

A curve is defined by the equation 
( )

2

2
4

2
xy
x
+=
−

, 2x ≠ . 

  
(a) Express this equation in form 

( )22
Bxy A

x
= +

−
. 

1 

5. 

  

 

 
(b) (i) Write down the equations of the asymptotes to the curve.  2  
     

  (ii) Obtain the stationary point(s) of the curve and justify their natures.  5 
      
 (c) Sketch the curve, showing all the features found in part (b).  2 
    
    
6. Prove by induction that 8 1n −  is divisible by 7 for all positive integers n.  5 
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 Marks 

7. Use the substitution 23u x= −  to evaluate 
1

3 20 3
x dx

x−∫ .  
5 

    
    
8. (a) Show that 2 2z i= − −  is a root of the equation   
     
  3 2 4 24 0z z z+ − − =   2 
     
 (b) Obtain the other roots of the equation.  2 
     
    
9. Express 

2

2
8 5

( 1)
x x
x x
+ +
+

 in the form 
2 1

Bx CA
x x

++
+

, stating the values of the constants A, B and 

C. 

 

3 
    
 

Hence determine an expression for 
2

2
8 5

( 1)
x x dx
x x
+ +
+∫ . 

 

4 
    
    
10. 

Given that 23 sec
dy

y x
dx

=  and 240y =  when 
4

x π= , find an expression for y in terms of 

x only. 

 

5 
    
    
11. Prove by contradiction that if a is odd then 2( 3)a +  must be even, where a is a positive 

integer. 

 

3 
    
    
    
  [Turn over   
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   Marks 
12. Let 2 cos 2 sinz iθ θ= + .   
    

(a) Use de Moivre’s theorem to find an expression for 3z . 1 
  

 

 
(b) Use the binomial expansion to find another expression for 3z .  3 
  

 

(c) Using the results from parts (a) and (b) show that 
 

 
  2

3
cos3 tan
cos

a bθ θ
θ
= +   

 

  stating the values of the constants a and b.  3 
    
    

13. Use integration by parts to obtain the value of 
3

2 4

0

xx e dx∫ .  
6 

    
    
14. A function f is defined by the equation 3 3 2(1 ) ( 2) xy x x e−= + + .   
    
 

Use logarithmic differentiation to obtain an expression for 
dy
dx

 in terms of x. 
 

3 
    
 Hence find the equation of the tangent to the curve when x = 0.  2 
    
    
15. 

Calculate ( )
34

7

3 7
r

k
=

+∑ . 
 

4 
    
    

16. A function is defined on a suitable domain as 2 4xy y+ = − .   
    

 
(a) 

Find an expression for 
dy
dx

. 
 

3 
     
 (b) Hence find an equation of a tangent to the curve at 4x = − .  3 
     

 
(c) 

Determine an expression for 
2

2

d y

dx
 in terms of x and y only. 

 

4 
     
    
17. 

Use the substitution ( )22 23 1u x= −  to obtain 
1
3

2 40

6

6 9

x dx
x x−∫ .  

 

7 
     
    
 [END OF QUESTION PAPER]   
    
 TOTAL  100 

 
 
 
 
 
 
 
 



Page 5 
[MATH(AH)10]  
http://store.perfectpapers.net 

 

 

 

 Additional Questions for Unit 3  Marks 
    
A. The points A(1, 3, 0), B(–2, 0, 5) and C(2, –3, –1) all lie in the plane ∏ .   
     
 (a) Calculate the equation of plane ∏ .  4 
     
 (b) Calculate the point of intersection between the line 3: 5

2 3
x zL y+ −= − =  and the 

plane ∏  and the size of the angle between L and ∏ . 

 

5 
    
    

Find the Maclaurin expansion for sin( ) xf x e= , 
2 2

xπ π− ≤ ≤  as far as the 4x  term.  
5 

B. 

   
    
C. Given that for matrix A, 2 5 2A A I= −  where I is the corresponding identity matrix, find 

the integers x and y such that 
 

 
 4A xA yI= +   4 
     
     
D. Obtain the general solution of the differential equation   
    

 
2

2
2 15 8cos

d y dy
y x

dxdx
+ − =   

7 
    

 Hence find the particular solution given that 0
dy
dx

=  and y = 2, when x = 0.  
3 

    
     
  [END OF ADDITIONAL QUESTIONS]   
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Advanced Higher Mathematics 
 
Marking Instructions 
 
 
 
Distribution of marks 
Candidates will be expected to answer all of the questions.  There will be a total of 100 marks 
for the paper. 
 
The below suggested marking thresholds are based on an unaltered paper for units 1 and 2.   
 
If inserting unit 3 questions then the below marking thresholds may only be used if: 
 
1] the total number of A marks and the total number of B marks is the same or greater 
2] each of the three units has at least 30% of the marks 
 
If either or both of the above criteria are not met, the cutoffs should be adjusted upwards 
 
 

Suggested Marking Thresholds 
 
 

Mark Grade 

90% A1 

75% A 

63% B 

50% C 

45% D 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1 

1 

1. (a) 1b 
Differentiation 

 3 4 13 siny x x−= , where 
2 2

xπ π− ≤ ≤ .  Find an 

expression for 
dy
dx

. 

• Use the product rule 

( ) ( ) ( ) ( )4 1 4 13 sin 3 sin
dy d dx x x x
dx dx dx

− −= +  

• Know the derivative of 1sin x−  

3 1 4

2

112 sin 3
1

x x x
x

−⋅ + ⋅
−

 

4
3 1

2

312 sin
1

xx x
x

−⋅ +
−

 

• Accuracy 1 3 
        

1 

1 

 
(b) 1b 

Differentiation 
1 2 

Find an expression for ( )f x′  when 
5

2
3( )

x
xf x

e
−= . 

• Use the quotient rule 

( ) ( ) ( ) ( )
( )

5 2 5 2

22

3 3
( )

x x

x

d dx e x e
dx dxf x

e

− − −
′ =  

• Use the chain rule to differentiate 2xe  

( ) ( )4 2 5 2

4

5 3 2x x

x

x e x e

e

− ⋅ − − ⋅
 

5 4

2
2 5 6

x
x x

e
− −  

• Accuracy 1 3 
 
 
 
 
 

[Turn over
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

Use Gaussian elimination to solve this system of 
equations 
 

 

• Express system of equations as a matrix in 
augmented form 

1 1 3 4

3 3 4 21

1 3 4 2

− − 
 − 
 
 

 

1  
 • Begin elementary row operations so that 

21 0a =  and 31 0a =  

1 1 3 4

2 2 3 1 0 6 13 33

3 3 3 2 0 12 8 15

R R R

R R R

− − 
 → − − 
 → − − 

 

1  
• Repeat elementary row operations until 

matrix is in upper triangular form 

1 1 2 3

0 6 13 33

3 3 2 2 0 0 34 51R R R

− 
 − 
 → +  

 

1  
• Solve for z using row 3. 

334 51
2

z z= ∴ =  
1  

2.  1e 
Matrices 

 5 

 

• Back substitute to find values for y then x. 
9 11
4 4

y and x∴ = − =  
1 5 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

3.  2a 
Differentiation 

4 2 A curve is defined by the parametric equations 
23 8x t= +   and  27 3y t t= − −  • Calculate 

dydx and
dt dt

 

6 3 2
dydx t and t

dt dt
= − −  

1  

• Know how to find 
dy
dx

 

dy dy dx
dx dt dt
= ÷  

1  

• Accuracy of 
dy
dx

 

3 2
6

dy t
dx t

− −=  
1  

• Find a point on the line 
When t = 2,  (x, y) = (20, –3) 1  

• Find the gradient of the line 

7
12

dy
m

dx
= = −  

1  

     for all t.  Find the equation of the tangent to the 
curve when t = 2. 

• Use the point-gradient formula to state 
the equation of the tangent 

( )73 20
12

y x+ = − −  
1 6 

 
 
 
 

[Turn over 
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Analysis 
No Unit / 

Outcome 
Marks at levels Question Illustrations of evidence for awarding each mark Marks 

         

4.  2d 
Sequences & 

Series 

3 3 An arithmetic series and a geometric series both 

have terms 3 6u =  and 5 14u = .  A geometric 

series with the term 2 135v =  and common ratio r 

has a sum to infinity equal to the sum of the first 20 
terms of the arithmetic series. 
Calculate the possible values for the common ratio, 
r, of the geometric series. 

• Find the common difference and initial 
term of the arithmetic series. 

 

1  
 

 

1 

1 

1 

     

  

• Find the sum of the first 20 terms of the 
arithmetic series 

 
• Express 1v  in terms of 2v  and r  

 
• Substitute into the formula for the sum 

to infinity terms of a geometric series 

 
• Create equation for r  1  
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Analysis 
No Unit / 

Outcome 
Marks at levels Question Illustrations of evidence for awarding each mark Marks 

4.(Cont)      • Solve for r  

 
       

 
11
2

2
31 ,

4 4

r
±

=

=

 

1 6 
 

5.      A curve is defined by the equation 
( )

2

2
4

2
xy
x
+=
−

, 

2x ≠ . 

   

          
 (a)  1a 

Algebra 
1  Express this equation in form 

( )22
By A

x
= +

−

. • Division 

  1 
          

1 
 (b) (i) 1d 

Functions 
 2 Write down the equations of the asymptotes to the 

curve. 
• State the vertical asymptote 

2x =  
• State the non-vertical asymptote 

1y =  1 2 
[Turn over 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

5. (Cont)       

1 

1 

1 

Obtain the stationary point(s) of the curve and 
justify their natures. 

• Know to use quotient rule to calculate 
dy
dx

 

2 1

4

4( 2) 4 2( 2)
( 2)

dy x x x
dx x

− − ⋅ −
=

−
 

• Calculate 
dy
dx

 accurately 

3

4( 2)
( 2)

dy x
dx x

+
= −

−
 

• Create equation for 0
dy
dx
=  

• Find stationary points 
Stationary points occur when 2 0x + =  

12,
2

x y= − =  

1 
 • Determine their nature 

 

 (b) (ii) 1b 
Differentiat

ion 

 5 

 

1( 2, )
2

−  is a minimum turning point. 

1 5 



Page 9 

[MATH(AH)10 - MS]  
http://store.perfectpapers.net 

 
 

 

 

Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

5. (Cont)        
• Graph: asymptotes and general shape 1 Sketch the curve, showing all the features found in 

part (b). • Graph: stationary point 1 

 

 

(c) 1d 
Functions 

 2 

 

 2 
 

 
 
 
 
 
 

[Turn over 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

1 

1 

1 

1 

6.  2e 
Proof 

 5 Prove by induction that 8 1n −  is divisible by 7 for 
all positive integers n. 

• Show true for n = 1 and assume true 
for n = k 

• For 11, 8 1 7n = − =  which is 

divisible by 7.  Assume true for 

 
• Consider the case where 1n k= +  

For 11, 8 1 ......kn k += + − =  

• Manipulate 

 
• Prove  

which is divisible by 7 
• Conclusion 
Hence, if true for  n = k  then also true for 
n = k + 1 and since true for n = 1, true 

n∀ . 1 5 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

         

1 

1 

1 

1 

7. 1c 
Integration 

 5 Use the substitution 23u x= −  to evaluate 
1

3 20 3
x dx

x−∫ . 

• Find du
dx

 

12
2

du x dx du
dx x
= − ∴ = −  

when x = 1, u = 2 and when x = 0, u = 3. 
• Substitute 

2

33

1
2

x du
xu
−⋅∫  

• Simplify 
12
3

3

1
2

u du
−

− ∫  

• Integrate  

3 2 23
4 3

u −
 

 

• Evaluate 

( )333 9 4
4

−  
1 5 

 
 
 
 
 
 
 
 

[Turn over 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

8. (a) 2c 
Complex 
numbers 

 2 Show that 2 2z i= − −  is a root of the equation 

3 2 4 24 0z z z+ − − =  

• Calculate 2z  and 3z  
2 38 16 16z i and z i= = −  

Show that ( 2 2 ) 0f i− − =  

• (16 16 ) (8 ) 4( 2 2 ) 24 0i i i− + − − − − =  

2 
         
 (b) 2c 

Complex 
numbers 

 2 Obtain the other roots of the equation. • Know that if z  is a root then so is z  and zz  
If 2 2i− −  is a root then 

( ) ( )( 2 2 ) ( 2) (2 )z i z i− − − = + +  is a factor as is 

( )( 2) (2 )z i+ −  and 

( ) ( ) 2( 2) (2 ) ( 2) (2 ) 4 8z i z i z z+ + + − = + +  

• Division and solution 

 2 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1 

1 

9.  1a 
Algebra 

 3 
Express 

2

2
8 5

( 1)
x x
x x
+ +
+

 in the form 
2 1

Bx CA
x x

++
+

, 

stating the values of the constants A, B and C. 

• Equate and multiply through by 
2( 1)x x +  

2

2 2
8 5

( 1) 1
x x Bx CA

xx x x
+ + += +
+ +

 

Multiply through by 2( 1)x x +  
2 28 5 ( 1)x x A x Bx+ + = + +  

• Find the value of A 
Let 0, 5 0 5x A A= = + ∴ =  

• Substitute in the value of A and find B 
and C. 

 
1 3 

      

1 

1 

1 

  
1c & 2b 

Integration 
 

 4 Hence determine an expression for 
2

2
8 5

( 1)
x x dx
x x
+ +
+∫ . 

• Create terms that can be integrated 

2 2 2
5 3 1 5 3 2 1

21 1 1
x xdx dx

x xx x x
   ++ = + ⋅ +   

+ + +   ∫ ∫  

• Integrate 1
x

 

5ln ....x +  

• Integrate ( )
( )

f x
f x
′  

23.... ln 1 ....
2

x+ + +  

• Integrate 
2

1
1 x+

 

1.... tan x c−+ +  1 4 
[Turn over 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1 

1 

1 

1 

10.  2b 
Integration 

 5 
Given that 23 sec

dy
y x

dx
=  and 240y =  when 

4
x π= , find an expression for y in terms of x 

only. 

• Separate variables 
21 3secdy x dx

y
=  

• Integrate 

 
• Exponential of each side 

 
• Substitute in values 

 
• Expression for y 

3tan
3

240 xy e
e

=  
1 5 

        

1  
• Assume that a is even 

2a k∴ =  

• Calculate 2( 3)a +  1  

11.  2e 
Proof 

 3 Prove by contradiction that a is odd the 
2( 3)a + must be even, where a is a positive 

integer. 

 which is odd. 
• Conclusion 
Hence, the assumption must be false. 
Therefore, a is not odd. Therefore, a is even. 1 3 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

12.     Let 2 cos 2 sinz iθ θ= + .    
         
 (a) 2c 

Complex 
numbers 

1  Use de Moivre’s theorem to find an expression for 
3z . 

• Expression for 3z  

( )
33 2 cos3 sin 3z iθ θ= +  1 1 

        

1 

1  

 (b) 2c 
Complex 
numbers 

 3 Use the binomial expansion to find another 

expression for 3z .  
• Numerical coefficients 

 
• Correct terms 

 
• Simplify 

 1 3 
         
 (c) 2c 3  Using the results from parts (a) and (b) show that 

1  Complex 
numbers 

  2
2

cos 3 cos tan
cos

a bθ θ θ
θ
= +  

   

1  

  

   
stating the values of the constants a and b. 

• Equate Real parts 
3 2cos3 cos 3cos sinθ θ θ θ= −  

• Divide 
2

3 2
cos3 sin1 3
cos cos

θ θ
θ θ
= −  

• Simplify and state solution 
2

3
cos3 1 3tan 1, 3
cos

a bθ θ
θ
= − ∴ = = −  

1 3 
[Turn over 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

13.  2b 6  
  Integration   

1  

1  

1  

1  

1  

     

Use integration by parts to obtain the value of 
3

2 4

0

xx e dx∫ . 

• First application done correctly 
3

4 4 2 4

0

31 1 2
4 4 0

x x xe x dx e x e x dx ⋅ = ⋅ − ⋅  ∫ ∫  

• Second application: terms 1 and 2 correct 

4 2 4 4 31 1 1 1 1
4 2 4 4 0

x x xe x e x e dx
  = ⋅ − ⋅ − ⋅    ∫  

• Second application: terms 3 and 4 correct 

4 2 4 4 31 1 1 1 1
4 2 4 4 0

x x xe x e x e dx
  = ⋅ − ⋅ − ⋅    ∫  

• Integrate 

4 2 4 4 31 1 1
4 8 32 0

x x xe x e x e = ⋅ − ⋅ +  
 

• Simplify 

( )4 2 31 8 4 1
32 0

xe x x = − +   

• Evaluate 

 1 6 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

14.  2a 
Differntiation 

5  A function f is defined by the equation 
3 3 2(1 ) ( 2) xy x x e−= + + . 

  

1  

1  

     Use logarithmic differentiation to obtain an 

expression for 
dy
dx

 in terms of x. 

• Use logarithms to simplify 
ln 3ln(1 ) 3ln( 2) 2y x x x= + − + +  

• Differentiate 

3 31 2
1 2

dy
y dx x x
⋅ = − +

+ +
 

• Expression for 
dy
dx

 

( ) ( )3 3 23 3 2 (1 ) ( 2)
1 2

xdy
x x e

dx x x
−= − + + +

+ +
 

1 3 
        

1  

     Hence find the equation of the tangent to the curve 
when x = 0. 

• Find a point on the line and calculate the 
gradient 

When 10,
8

x y= =  

( ) ( )3 3 712
1 2 8 16

dy
m

dx
= = − + =  

• Use the point-gradient formula correctly 
71

8 16
y x− =  

1 2 
 
 
 

[Turn over 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1  

1  

1  

15.  2d 
Sequences & 

Series 

 4 
Calculate ( )

34

7

3 7
r

k
=

+∑ . 
• Identify a and d 

10, 3a d= =  

• Find the sum of the first 6 terms 

 
• Find the sum of the first 34 terms 

 
• Solution 

 1 4 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

        

   16     A function is defined on a suitable domain as 
2 4xy y+ = − .    

        
(a) 2a 

Differntiation 
 3 

Find an expression for 
dy
dx

. 
• Implicit differentiation: use the product 

rule to differentiate xy  

1 ....
dy

y x
dx

⋅ + ⋅ +  

• Use the Chain Rule to differentiate 2y  

.... 2 0
dy

y
dx

+ ⋅ =  

•  

 

 

3 
        

2a 
Differntiation 

 3 Hence find an equation of a tangent to the curve at x 
= –4. 

• Create an equation for y and solve 

• When x = –4, 

2

2

4 4

( 2) 0

2

y y

y

y

+ = −

− =

=

 

 
• When x = -4, y = 2      

2 2
4 4 0

dy
m

dx
= = =

− +
 

which is undefined so tangent must be 
vertical and equation is x = –4. 

  (b) 

      3 
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No Analysis Question Illustrations of evidence for awarding each mark Marks 

16(cont)        
        
(c) 2a 

Differntiation 
3  

Determine an expression for 
2

2

d y

dx
 

in terms of x and y only. 

• Use the quotient rule to get 

2

2 2

( 2 ) (1 2( ))

( 2 )

dy dy
x y yd y dx dx

dx x y

− + + + −
=

+
 

• Substitute in expression for 
dy
dx

 

2

2 2

( 2 ) 1 2
2 2

( 2 )

y y
x y y

x y x yd y
dx x y

   + + −   + +   =
+

 

• Simplify 

2

2

2 2

2
2

( 2 )

y
y y

d y x y

dx x y

+ −
+

=
+

 

• Accuracy 
2 2

2 3

2 2
( 2 )

d y xy y

dx x y

+
=

+
 

  4 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

1  

1  

1  

1  

1  

1  

17.  2b 
Integration 

4 3 
Use the substitution ( )22 23 1u x= −  to obtain 

1
3

2 40

6
6 9

x dx
x x−∫ .  

• Find du
dx

 and convert limits 

 
• Substitute 

6x
2 62( 1) ( 1)

du
xu u

⋅
+ − +

0

1−∫  

• Simplify 
0

21

1
2 2 ( 2 1)

du
u u u− + − + +∫  

• Further simplification 
0

21

1
1

du
u− −∫  

• Integrate 

1 0
sin

1
u−   −

 

• Evaluate  
1 1sin (0) sin ( 1)− −− −  

• Solution 
3
2
π−  

1 7 
Total 100 marks 

 
[END OF MARKING SCHEME] 
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Additional Questions for unit 3 
 

Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

A  3a   
  Vectors   

The points A(1, 3, 0), B(–2, 0, 5) and C(2, –3, –1) 
all lie in the plane ∏ . 

 

  
         

1 

 

1 

 

1 

 

 (a)   4 Calculate the equation of plane ∏ . • Vector product of two vectors in the 
plane to get a normal vector. 

3 3 5

1 6 1

i j k

AB AC× = − −

− −

% %uuur uuur %
 

• Accuracy 

33

2

21

n

 
 =  
 
 

%
 

• Use scalar product 

33 1

2 3

21 0

x

n AP y

z

−   
   ⋅ = ⋅ −   
   −   

uuur
 

• Solution 
33 2 21 36x y z+ + =  1 4 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

A.(Cont)        

1 

 

1 

 

1 

 

1 

 

 (b)   5 Calculate the point of intersection between the line 
3: 5

2 3
x zL y+ −= − =  and the plane ∏  and 

the size of the angle between L and ∏ . 

• Converting equation of line into 
parametric form and substituting values 
in equation of plane 
2 3, 5, 3 5 125x t y t z t t= − = + = − ∴ =  

• Point of intersection 
t = 25 so point of intersection is (47, 30, –75) 
• Use scalar product correctly 

33 2

2 1 5

21 3

n l

   
   ⋅ = ⋅ =   
   −   

% %
 

• Calculate angle between line and normal 
vector 

 
• Solution 

angle between line and plane is 
90 88 0 2 0° − ⋅ ° = ⋅ °  1 5 

 
[Turn over 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1 

 

1 

 

1 

 

1 

 

B.  3c 
Sequences & 

Series  

5  Find the Maclaurin expansion for sin( ) xf x e= , 

2 2
xπ π− ≤ ≤  as far as the 4x  term. 

• Expansion for exp(x) 
2 3 4

1
2 6 24

x x x xe x≈ + + + +  

• Expansion for sin x 
3sinx x x≈ −  

• Substitute sin x expansion into exp(x) 
expansion 

 
• Simplify 

2 4 3 4
sin 3 2 ... ...1

2 6 24
x x x x xe x x − + +≈ + − + + +  

• Solution 
2 3 4

sin 5 231
2 6 24

x x x xe x≈ + + − −  
1 5 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

C.  3b 
Matrices 

 4 Given that for matrix A, 2 5 2A A I= −  where I is 
the corresponding identity matrix, find the integers 
x and y such that 1  

1  

1  

     4A xA yI= +  

• Square expression for A squared 

 
• Know that AI = A and that I squared = I  

25 20 4A A I− +  
• Substitute in expression for A squared 

( )5 5 2 20 4A I A I− − +  

• Solution 
5 6 5 6A I x and y− ∴ = = −  

1 4 
 
 
 
 
 
 
 
 
 
 
 
 

[Turn over 
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Analysis 
Marks at levels No Unit / 

Outcome A/B C 
Question Illustrations of evidence for awarding each mark Marks 

1  

1  

1  

1  

1  

1  

D.  3d 
Differential 
Equations 

5 2 Obtain the general solution of the differential 
equation 

2

2
2 15 8cos

d y dy
y x

dxdx
+ − =  

• Form and solve the auxiliary equation  
2. : 2 15 0 5, 3nAux Eq m m m+ − = ∴ = −  

• Derive the complementary function 
5 3. :n x xComp Func y Ae Be−= +  

• Define the particular integral and 
differentiate twice 

 
• Substitute particular integral into original 

differential equation 

 
• Equate coefficients 

2 16 8 16 2 0D C and D C− = − − =  

• Find values for constants 
8 1
17 17

C and D= − =  

• State the general solution 

 1 7 
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Analysis 

Marks at levels No Unit / 
Outcome A/B C 

Question Illustrations of evidence for awarding each mark Marks 

1  

1  

D.(Cont)   3 Hence find the particular solution given that 

0
dy
dx
=  and y = 2, when x = 0. 

• Differentiate general solution 

5 3 8 15 3 sin cos
17 17

x xdy
Ae Be x x

dx
−= − + + −  

• Substitute x = 0 into general solution and 
into its derivative 

 
• Solve to find constants and state particular 

solution 
125 211
136 136

A and B= =  so particular solution 

is 
5 3125 8211 1cos sin

136 136 17 17
x xy e e x x−= + − +  

1 3 
Total 28 marks 

 
 

[END OF MARKING SCHEME FOR ADDITIONAL QUESTIONS] 


