

MATH(AH)10

NATIONAL QUALIFICATIONS 2010 TIME: 3 HOURS

MATHEMATICS ADVANCED HIGHER

Covering units 1 & 2

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions.
- 3. Full credit will be given only where the solution contains appropriate working.

The security of this examination paper requires that it is withdrawn from candidates after the examination and also after any discussion of the candidates' results. This will ensure that the paper continues to be secure for your centre and others during presentation year 2009/2010. Any appeals made based on this paper will assume that these security precautions are in place.

© 2009-2010 Perfect Papers – All rights reserved.

Answer all the questions

Marks

5

6

1. (a)
$$y = 3x^4 \sin^{-1} x$$
, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Find an expression for $\frac{dy}{dx}$. 3

(b) Find an expression for
$$f'(x)$$
 when $f(x) = \frac{3 - x^5}{e^{2x}}$. 3

2. Use Gaussian elimination to solve this system of equations

х	+	<i>y</i>	-	3z	=	-4
3x	-	3y	+	4 <i>z</i>	=	21
x	+	3y	+	4 <i>z</i>	=	2

3. A curve is defined by the parametric equations

$$x = 3t^2 + 8$$
 and $y = 7 - 3t - t^2$

for all *t*. Find the equation of the tangent to the curve when t = 2.

4. An arithmetic series and a geometric series both have terms $u_3 = 6$ and $u_5 = 14$. A second geometric series with the term $v_2 = 135$ and common ratio *r* has a sum to infinity equal to the sum of the first 20 terms of the arithmetic series. Calculate the possible values for the common ratio, *r*, of the second geometric series.

5. A curve is defined by the equation $y = \frac{x^2 + 4}{(x - 2)^2}, x \neq 2$.

(a) Express this equation in form
$$y = A + \frac{Bx}{(x-2)^2}$$
.

6. Prove by induction that $8^n - 1$ is divisible by 7 for all positive integers *n*. 5

Marks

2

3

3

7. Use the substitution
$$u = 3 - x^2$$
 to evaluate $\int_0^1 \frac{x}{\sqrt[3]{3 - x^2}} dx$. 5

8. (a) Show that z = -2 - 2i is a root of the equation

$$z^3 + z^2 - 4z - 24 = 0$$
 2

- (b) Obtain the other roots of the equation.
- 9. Express $\frac{8x^2 + x + 5}{x(x^2 + 1)}$ in the form $\frac{A}{x} + \frac{Bx + C}{x^2 + 1}$, stating the values of the constants *A*, *B* and *C*.

Hence determine an expression for
$$\int \frac{8x^2 + x + 5}{x(x^2 + 1)} dx$$
.

- 10. Given that $\frac{dy}{dx} = 3y \sec^2 x$ and y = 240 when $x = \frac{\pi}{4}$, find an expression for y in terms of x only. 5
- 11. Prove by contradiction that if a is odd then $(a + 3)^2$ must be even, where a is a positive integer.

12.	Let $z = \sqrt{2} \cos \theta + i\sqrt{2} \sin \theta$.	Marks
	(a) Use de Moivre's theorem to find an expression for z^3 .	1
	(b) Use the binomial expansion to find another expression for z^3 .	3
	(c) Using the results from parts (a) and (b) show that $\frac{\cos 3\theta}{3a} = a + b \tan^2 \theta$	
	stating the values of the constants a and b .	3
13.	Use integration by parts to obtain the value of $\int_0^3 x^2 e^{4x} dx$.	6
14.	A function f is defined by the equation $y = (1 + x)^3 (x + 2)^{-3} e^{2x}$.	
	Use logarithmic differentiation to obtain an expression for $\frac{dy}{dx}$ in terms of x.	3
	Hence find the equation of the tangent to the curve when $x = 0$.	2
15.	Calculate $\sum_{r=7}^{34} (3k+7).$	4
16.	A function is defined on a suitable domain as $xy + y^2 = -4$.	
	(a) Find an expression for $\frac{dy}{dx}$.	3

(b) Hence find an equation of a tangent to the curve at x = -4. 3

(c) Determine an expression for
$$\frac{d^2 y}{dx^2}$$
 in terms of x and y only. 4

17. Use the substitution
$$u^2 = (3x^2 - 1)^2$$
 to obtain $\int_0^{\frac{1}{\sqrt{3}}} \frac{6x}{\sqrt{6x^2 - 9x^4}} dx$.

[END OF QUESTION PAPER]

TOTAL 100

perfectogoers

[MATH(AH)10] http://store.perfectpapers.net

Page 4

Additional Questions for Unit 3 Marks

4

3

- A. The points A(1, 3, 0), B(-2, 0, 5) and C(2, -3, -1) all lie in the plane \prod .
 - (a) Calculate the equation of plane \prod .
 - (b) Calculate the point of intersection between the line $L: \frac{x+3}{2} = y-5 = \frac{-z}{3}$ and the plane \prod and the size of the angle between L and \prod . 5
- **B.** Find the Maclaurin expansion for $f(x) = e^{\sin x}$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ as far as the x^4 term. 5
- C. Given that for matrix A, $A^2 = 5A 2I$ where I is the corresponding identity matrix, find the integers x and y such that

$$A^4 = xA + yI \tag{4}$$

D. Obtain the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 15y = 8\cos x$$

Hence find the particular solution given that $\frac{dy}{dx} = 0$ and y = 2, when x = 0.

[END OF ADDITIONAL QUESTIONS]

perfectpapers

[MATH(AH)MS - 2010]

NATIONAL QUALIFICATIONS 2010

Marking Instructions

ADVANCED HIGHER MATHEMATICS

The security of this examination paper requires that it is withdrawn from candidates after the examination and also after any discussion of the candidates' results. This will ensure that the paper continues to be secure for your centre and others during presentation year 2009/2010. Any appeals made based on this paper will assume that these security precautions are in place.

© 2009-2010 Perfect Papers – All rights reserved

[MATH(AH)10 - MS] http://store.perfectpapers.net Page 1

Advanced Higher Mathematics

Marking Instructions

Distribution of marks

Candidates will be expected to answer all of the questions. There will be a total of 100 marks for the paper.

The below suggested marking thresholds are based on an unaltered paper for units 1 and 2.

If inserting unit 3 questions then the below marking thresholds may only be used if:

- 1] the total number of A marks and the total number of B marks is the same or greater
- 2] each of the three units has at least 30% of the marks

If either or both of the above criteria are not met, the cutoffs should be adjusted upwards

Suggested Marking Thresholds

Mark	Grade
90%	A1
75%	А
63%	В
50%	С
45%	D

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
1. (a)	1b Differentiation		3	$y = 3x^4 \sin^{-1} x$, where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. Find an expression for $\frac{dy}{dx}$.	• Use the product rule $\frac{dy}{dx} = \frac{d}{dx} (3x^4) (\sin^{-1} x) + (3x^4) \frac{d}{dx} (\sin^{-1} x) \qquad 1$ • Know the derivative of $\sin^{-1} x$ $12x^3 \cdot \sin^{-1} x + 3x^4 \cdot \frac{1}{\sqrt{1-x^2}}$ $12x^3 \cdot \sin^{-1} x + \frac{3x^4}{\sqrt{1-x^2}} \qquad 1$ • Accuracy	3
(b)	1b Differentiation	1	2	Find an expression for $f'(x)$ when $f(x) = \frac{3 - x^5}{e^{2x}}$.	• Use the quotient rule $f'(x) = \frac{\frac{d}{dx}(3-x^5)(e^{2x}) - (3-x^5)\frac{d}{dx}(e^{2x})}{(e^{2x})^2} \qquad 1$ • Use the chain rule to differentiate e^{2x} $\frac{-5x^4 \cdot e^{2x} - (3-x^5) \cdot \boxed{(2e^{2x})}}{e^{4x}}$ $\frac{2x^5 - 5x^4 - 6}{e^{2x}} \qquad 1$ • Accuracy	3

Page 3

perfectpapers

	Analysis					
No	Unit /	Unit / Marks at levels		Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
2.	1e Matrices		5	Use Gaussian elimination to solve this system of equations	• Express system of equations as a matrix in augmented form	
				x + y - 3z = -4 3x - 3y + 4z = 21 x + 3y + 4z = 2	$ \begin{pmatrix} 1 & 1 & -3 & -4 \\ 3 & -3 & 4 & 21 \\ 1 & 3 & 4 & 2 \end{pmatrix} $ • Begin elementary row operations so that $a_{21} = 0$ and $a_{31} = 0$ $ \begin{pmatrix} 1 & 1 & -3 & -4 \end{pmatrix} $	
					$R2 \rightarrow R2 - 3R1 \begin{vmatrix} 0 & -6 & 13 & 33 \\ R3 \rightarrow 3R3 - R2 \begin{pmatrix} 0 & 12 & 8 & -15 \end{pmatrix} \\ 0 & 12 & 8 & -15 \end{pmatrix} 1$ • Repeat elementary row operations until matrix is in upper triangular form $R3 \rightarrow R3 + 2R2 \begin{pmatrix} 1 & 1 & -2 & 3 \\ 0 & -6 & 13 & 33 \\ 0 & 0 & 34 & 51 \end{pmatrix} 1$	
					• Solve for z using row 3. $34z = 51$ $\therefore z = \frac{3}{2}$ 1 • Back substitute to find values for y then x. $\therefore y = -\frac{9}{4}$ and $x = \frac{11}{4}$ 1	5

perfectpapers

	Analysis					
No	Unit /	Marks a	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
3.	Outcome 2a Differentiation	<u>A/B</u> 4	<u>C</u> 2	A curve is defined by the parametric equations $x = 3t^2 + 8$ and $y = 7 - 3t - t^2$ for all <i>t</i> . Find the equation of the tangent to the curve when $t = 2$.	• Calculate $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt}$ 6t and $\frac{dy}{dt} = -3 - 2t$ 1 • Know how to find $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ 1 • Accuracy of $\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{-3 - 2t}{6t}$ • Find a point on the line When $t = 2$, $(x, y) = (20, -3)$ • Find the gradient of the line $m = \frac{dy}{dx} = -\frac{7}{12}$ 1	
					• Use the point-gradient formula to state the equation of the tangent $y + 3 = -\frac{7}{12}(x - 20)$ 1	6

[MATH(AH)10 - MS] http://store.perfectpapers.net

perfectpapens

	Analysis					
No	Unit / Outcome	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
4.	2d Sequences & Series	3	3	An arithmetic series and a geometric series both have terms $u_3 = 6$ and $u_5 = 14$. A geometric series with the term $v_2 = 135$ and common ratio r has a sum to infinity equal to the sum of the first 20 terms of the arithmetic series. Calculate the possible values for the common ratio, r, of the geometric series.	• Find the common difference and initial term of the arithmetic series. $u_{6} = u_{3} + 2d = 6 + 2d = 14$ $\therefore d = 4 \text{ and } u_{1} = a = -2$ 1 • Find the sum of the first 20 terms of the arithmetic series $S_{20} = \frac{n}{2} (2a + (n - 1)d))$ $= \frac{20}{2} (-4 + 19 \times 4)$ $= 720$ 1 • Express v_{1} in terms of v_{2} and r $v_{2} = ar = 135 \therefore a = \frac{135}{r}$ 1 • Substitute into the formula for the sum to infinity terms of a geometric series $S_{\infty} = \frac{a}{1-r}$ $= \frac{135}{r(1-r)}$ $= 720$ 1 • Create equation for r	

perfectpapers

	А	nalysis				
No	Unit / Outcome	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
4.(Cont)					• Solve for <i>r</i>	
					$r^2 - r + \frac{3}{16} = 0$	
					$r = \frac{1 \pm \frac{1}{2}}{2}$	
					$=\frac{1}{4},\frac{3}{4}$ 1	6
5				2		
5.				A curve is defined by the equation $y = \frac{x^2 + 4}{(x - 2)^2}$,		
				$x \neq 2$.		
(a)	1a Algebra	1		Express this equation in form $y = A + \frac{B}{(x-2)^2}$.	• Division 1	
					$x^2 - 4x + 4 x^2 + 0x + 4$	
					$x^2 - 4x + 4$	
					4x	
					$\therefore y = 1 + \frac{4x}{(x-2)^2}$	1
<i>(b)</i> (i)	1d		2	Write down the equations of the asymptotes to the	State the vertical asymptote	
	Functions			curve.	x = 2 1	
					• State the non-vertical asymptote	
					y = 1 1	2

perfectpapers

[MATH(AH)10 - MS] http://store.perfectpapers.net

No Unit / Marks at levels Question Illustrations of evidence for awarding ea		
Outcome A/D C	ch mark	Marks
Outcome A/B C		
5. (Cont) (b) (ii) 1b Differentiat ion 5 Obtain the stationary point(s) of the curve and $\frac{dy}{dx} = \frac{4(x-2)^2 - 4x \cdot 2(x-2)^1}{(x-2)^4}$ • Calculate $\frac{dy}{dx}$ accurately $\frac{dy}{dx} = -\frac{4(x+2)}{(x-2)^3}$ • Calculate $\frac{dy}{dx} = 0$ • Find stationary points Stationary points Stationary points $x = -2, y = \frac{1}{2}$ • Determine their nature $\frac{x}{dx} \rightarrow -2 \rightarrow \frac{1}{2}$ • Determine their nature	1 1 1	

perfectpapers

	А	nalysis				
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
5. (Cont) (c)	1d Functions		2	Sketch the curve, showing all the features four part (<i>b</i>).	d in • Graph: asymptotes and general shape 1 • Graph: stationary point 1 $y = y \frac{x^2 + 4}{(x-2)^2}$ x = 2 y = 1	2

[MATH(AH)10 - MS] http://store.perfectpapers.net perfectpapers

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
6.	Outcome 2e Proof	A/B	<u>C</u> 5	Prove by induction that $8^n - 1$ is divisible by 7 for all positive integers <i>n</i> .	• Show true for $n = 1$ and assume true for $n = k$ • For $n = 1$, $8^1 - 1 = 7$ which is divisible by 7. Assume true for $n = k \therefore 8^k - 1 = 7a$ $a > 0$ $\therefore 8^k = 7a + 1$ • Consider the case where $n = k + 1$ For $n = k + 1$, $8^{k+1} - 1 = \dots$ • Manipulate $= 8^k \cdot 8 - 1$ $= (7a + 1) \cdot 8 - 1$ = 56a + 7 = 7(8a + 1) • Prove which is divisible by 7 1	
					• Conclusion Hence, if true for $n = k$ then also true for $n = k + 1$ and since true for $n = 1$, true	_
L					$\vee n$.	Э

	Analysis		Analysis			
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
7.	1c Integration		5	Use the substitution $u = 3 - x^2$ to evaluate $\int_0^1 \frac{x}{\sqrt[3]{3 - x^2}} dx.$	• Find $\frac{du}{dx}$ $\frac{du}{dx} = -2x$ $\therefore dx = -\frac{1}{2x} du$ when $x = 1, u = 2$ and when $x = 0, u = 3$. • Substitute $\int_{3}^{2} \frac{\cancel{x}}{\sqrt[3]{u}} \cdot \frac{-1}{2\cancel{x}} du$ • Simplify $-\frac{1}{2} \int_{3}^{2} u^{-\frac{1}{3}} du$ • Integrate $-\frac{3}{4} \left[\sqrt[3]{u^{2}} \right]_{3}^{2}$ • Evaluate $\frac{3}{4} \left(\sqrt[3]{9} - \sqrt[3]{4} \right)$ 1	5

perfectpapens

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
8. (a)	Outcome 2c Complex numbers	A/B	<u>C</u> 2	Show that $z = -2 - 2i$ is a root of the equation $z^{3} + z^{2} - 4z - 24 = 0$	• Calculate z^2 and z^3 $z^2 = 8i$ and $z^3 = 16 - 16i$ Show that $f(-2 - 2i) = 0$ • $(16 - 16i) + (8i) - 4(-2 - 2i) - 24 = 0$	2
(b)	2c Complex numbers		2	Obtain the other roots of the equation.	• Know that if z is a root then so is \overline{z} and \overline{zz} If $-2-2i$ is a root then (z-(-2-2i)) = ((z+2)+(2i)) is a factor as is ((z+2)-(2i)) and $((z+2)+(2i))((z+2)-(2i)) = z^2+4z+8$ • Division and solution z-3 $z^2+4z+8)\overline{z^3+z^2-4z-24}$ $\underline{z^3+4z^2+8z}$ $-3z^2-12z-24$ $\underline{-3z^2-12z-24}$ 0 $\therefore z = \underline{-2-2i}, \underline{2+2i}, \underline{3}$	2

perfectpapens

	A	nalysis				
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
9.	1a Algebra		3	Express $\frac{8x^2 + x + 5}{x(x^2 + 1)}$ in the form $\frac{A}{x} + \frac{Bx + C}{x^2 + 1}$, stating the values of the constants <i>A</i> , <i>B</i> and <i>C</i> .	• Equate and multiply through by $x(x^{2} + 1)$ $\frac{8x^{2} + x + 5}{x(x^{2} + 1)} = \frac{A}{x} + \frac{Bx + C}{x^{2} + 1}$ Multiply through by $x(x^{2} + 1)$ $8x^{2} + x + 5 = A(x^{2} + 1) + Bx$ 1 • Find the value of A Let $x = 0$, $5 = A + 0$ $\therefore A = 5$ • Substitute in the value of A and find B and C. $8x^{2} + x + 5 = 5(x^{2} + 1) + (Bx + C)x$	
	1c & 2b Integration		4	Hence determine an expression for $\int \frac{8x^2 + x + 5}{x(x^2 + 1)} dx$	$3x^{2} + x = Bx^{2} + Cx$ $\therefore \underline{B} = 3, \ \underline{C} = 1$ • Create terms that can be integrated $\int \left(\frac{5}{x} + \frac{3x+1}{x^{2}+1}\right) dx = \int \left(\frac{5}{x} + \frac{3}{2} \cdot \frac{2x}{x^{2}+1} + \frac{1}{x^{2}+1}\right) dx$ • Integrate $\frac{1}{x}$ $\int \ln x + \dots$ • Integrate $\frac{f'(x)}{f(x)}$ $\dots + \frac{3}{2} \ln x^{2} + 1 + \dots$ • Integrate $\frac{1}{1+x^{2}}$ $\dots + \tan^{-1} x + c$ 1	3

perfectpapers

[MATH(AH)10 - MS] http://store.perfectpapers.net

	Aı	nalysis				
No	Unit /	Marks a	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
10.	2b Integration		5	Given that $\frac{dy}{dx} = 3y \sec^2 x$ and $y = 240$ when $x = \frac{\pi}{4}$, find an expression for y in terms of x only.	• Separate variables $\frac{1}{y} dy = 3\sec^2 x dx$ 1 • Integrate $\int \frac{1}{y} dy = \int 3\sec^2 x dx$ $\ln y = 3\tan x + c$ 1 • Exponential of each side $e^{\ln y} = e^{3\tan x + c} let \ e^c = A$ $y = Ae^{3\tan x}$ 1 • Substitute in values $240 = Ae^{3\tan \frac{\pi}{4}} = Ae^3$ $A = \frac{240}{e^3}$ • Expression for y	
					$y = \frac{240}{e^3} e^{3\tan x} $ 1	5
11.	2e Proof		3	Prove by contradiction that <i>a</i> is odd the $(a+3)^2$ must be even, where <i>a</i> is a positive integer.	• Assume that a is even $\therefore a = 2k$ 1 • Calculate $(a + 3)^2$ 1 $(a + 3)^2 = (2k + 3)^2$ $= 4k^2 + 12k + 9$ $= 2(2k^2 + 6k + 4) + 1$ which is odd.	
					• Conclusion Hence, the assumption must be false. Therefore, <i>a</i> is not odd. Therefore, <i>a</i> is even. 1	3

Page 14

perfectpapers

	A	nalysis				
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
12. (<i>a</i>)	2c Complex	1		Let $z = \sqrt{2} \cos \theta + i\sqrt{2} \sin \theta$. Use de Moivre's theorem to find an expression for z^3 .	• Expression for z^3 $z^3 = \sqrt{2}^3 (\cos 3\theta + i \sin 3\theta)$	
	numbers				$z = \sqrt{2} (\cos 30 + i \sin 30) = 1$	1
(b)	2c Complex numbers		3	Use the binomial expansion to find another expression for z^3 .	$z^{3} = \sqrt{2}^{3} \left(\cos \theta + i \sin \theta\right)^{3}$ • Numerical coefficients $= \sqrt{2}^{3} \left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} (\cos \theta)^{3} (i \sin \theta)^{0} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (\cos \theta)^{2} (i \sin \theta)^{1} \\ + \begin{pmatrix} 3 \\ 1 \end{pmatrix} (\cos \theta)^{1} (i \sin \theta)^{2} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} (\cos \theta)^{0} (i \sin \theta)^{3} \\ + \begin{pmatrix} 3 \\ 1 \end{pmatrix} (\cos \theta)^{1} (i \sin \theta)^{2} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} (\cos \theta)^{0} (i \sin \theta)^{3} \\ + \begin{pmatrix} 3 \\ 1 \end{pmatrix} (\cos \theta)^{1} (i \sin \theta)^{2} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} (\cos \theta)^{0} (i \sin \theta)^{3} \\ + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (\cos^{3} \theta + 3i \cos^{2} \theta \sin \theta - 3\cos \theta \sin^{2} \theta - i \sin^{3} \theta) $ • Simplify $= \sqrt{2}^{3} \left((\cos^{3} \theta - 3\cos \theta \sin^{2} \theta) + i (3\cos^{2} \theta - \sin^{3} \theta) \right)$ 1	3
(c)	2c Complex numbers	3		Using the results from parts (<i>a</i>) and (<i>b</i>) show that $\frac{\cos 3\theta}{\cos^2 \theta} = a \cos \theta + b \tan^2 \theta$ stating the values of the constants <i>a</i> and <i>b</i> .	• Equate Real parts $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$ 1 • Divide $\frac{\cos 3\theta}{\cos^3 \theta} = 1 - 3 \frac{\sin^2 \theta}{\cos^2 \theta}$ 1 • Simplify and state solution $\frac{\cos 3\theta}{\cos^3 \theta} = 1 - 3\tan^2 \theta \therefore a = 1, b = -3$ 1	3

Page 15

perfectpapers

[MATH(AH)10 - MS] http://store.perfectpapers.net

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
13.	2b	6		Use integration by parts to obtain the value of	First application done correctly	
	Integration			$\int_0^3 x^2 e^{4x} dx \cdot$	$\int_{0}^{3} e^{4x} \cdot x dx = \left[\frac{1}{4}e^{4x} \cdot x^{2} - \int \frac{1}{4}e^{4x} \cdot 2x dx\right]_{0}^{3} = 1$	
					• Second application: terms 1 and 2 correct	
					$= \left[\frac{1}{4}e^{4x} \cdot x^2 - \frac{1}{2}\left(\frac{1}{4}e^{4x} \cdot x\right) - \int \frac{1}{4}e^{4x} \cdot 1dx\right)\right]_{0}^{3}$	
					• Second application: terms 3 and 4 correct	
					$= \left[\frac{1}{4}e^{4x} \cdot x^2 - \frac{1}{2}\left(\frac{1}{4}e^{4x} \cdot x - \boxed{\int \frac{1}{4}e^{4x} \cdot 1dx}\right)\right]_0^3 1$	
					• Integrate	
					$= \left[\frac{1}{4}e^{4x} \cdot x^2 - \frac{1}{8}e^{4x} \cdot x + \frac{1}{32}e^{4x}\right]_0^3 \qquad 1$	
					Simplify	
					$= \frac{1}{32} \left[e^{4x} \left(8x^2 - 4x + 1 \right) \right]_0^3 $	
					• Evaluate	
					$=\frac{1}{32}(61e^{12}-1)$	
					≈ 310251-3 1	6

Page 16

perfectpapers

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
14.	2a Differntiation	5		A function f is defined by the equation $y = (1+x)^3(x+2)^{-3}e^{2x}$. Use logarithmic differentiation to obtain an expression for $\frac{dy}{dx}$ in terms of x.	• Use logarithms to simplify ln $y = 3\ln(1+x) - 3\ln(x+2) + 2x$ 1 • Differentiate $\frac{1}{y} \cdot \frac{dy}{dx} = \frac{3}{1+x} - \frac{3}{x+2} + 2$ 1 • Expression for $\frac{dy}{dx}$ $\frac{dy}{dx} = \left(\frac{3}{1+x} - \frac{3}{x+2} + 2\right)\left((1+x)^3(x+2)^{-3}e^{2x}\right)$ 1	3
				Hence find the equation of the tangent to the curve when $x = 0$.	• Find a point on the line and calculate the gradient When $x = 0$, $y = \frac{1}{8}$ $m = \frac{dy}{dx} = \left(\frac{3}{1} - \frac{3}{2} + 2\right)\left(\frac{1}{8}\right) = \frac{7}{16}$ • Use the point-gradient formula correctly $y - \frac{1}{8} = \frac{7}{16}x$	2

perfectpapens

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
15.	2d Sequences & Series		4	Calculate $\sum_{r=7}^{34} (3k+7)$.	• Identify a and d a = 10, d = 3 1 • Find the sum of the first 6 terms $S_6 = \sum_{r=1}^{6} (3k+7)$ $= \frac{n}{2} (2a + (n-10)d)$	
					$= \frac{6}{2}(20 + 5 \times 3)$ = 105 1 • Find the sum of the first 34 terms $S_{34} = \sum_{r=1}^{34} (3k + 7)$	
					$= \frac{34}{2} (20 + 33 \times 3)$ = 2023 • Solution $\sum_{r=7}^{34} (3k+7) = 2023 - 105$ = 1918	
					= 1918 1	

Page 18

[MATH(AH)10 - MS] http://store.perfectpapers.net perfectpapers

	Analysis		Analysis			
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
16				A function is defined on a suitable domain as $xy + y^2 = -4$.		
(a)	2a Differntiation		3	Find an expression for $\frac{dy}{dx}$.	• Implicit differentiation: use the product rule to differentiate xy $1 \cdot y + x \cdot \frac{dy}{dx} + \dots$ • Use the Chain Rule to differentiate y^2 $\dots + 2y \cdot \frac{dy}{dx} = 0$ • $y + \frac{dy}{dx}(x + 2y) = 0$ $\frac{dy}{dx} = -\frac{y}{x + 2y}$	3
(b)	2a Differntiation		3	Hence find an equation of a tangent to the curve at $x = -4$.	• Create an equation for y and solve $4y + y^{2} = -4$ • When $x = -4$, $(y - 2)^{2} = 0$ y = 2 • When $x = -4$, $y = 2m = \frac{dy}{dx} = \frac{2}{-4+4} = \frac{2}{0} which is undefined so tangent must be vertical and equation is x = -4.$	3

perfectpapers

No	Analysis		Question	Illustrations of evidence for awarding each mark	Marks
No 16(cont) (c)	2a Differntiation	alysis 3	Question Determine an expression for $\frac{d^2 y}{dx^2}$ in terms of x and y only.	Illustrations of evidence for awarding each mark • Use the quotient rule to get $\frac{d^2 y}{dx^2} = \frac{-\frac{dy}{dx}(x+2y) + y(1+2(-\frac{dy}{dx}))}{(x+2y)^2}$ • Substitute in expression for $\frac{dy}{dx}$ $\frac{d^2 y}{dx^2} = \frac{\left(\frac{y}{x+2y}\right)(x+2y) + y\left(1-2\frac{y}{x+2y}\right)}{(x+2y)^2}$ • Simplify $\frac{d^2 y}{dx^2} = \frac{y+y-\frac{2y^2}{x+2y}}{(x+2y)^2}$	Marks
				• Accuracy $\frac{d^2 y}{dx^2} = \frac{2xy + 2y^2}{(x+2y)^3}$	4

Page 20

perfectpapers

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
17.	2b Integration	4	3	Use the substitution $u^2 = (3x^2 - 1)^2$ to obtain	• Find $\frac{du}{dx}$ and convert limits	
				$\int_{-\infty}^{\frac{1}{\sqrt{3}}} \frac{6x}{\sqrt{2}} dx.$	$\frac{du}{dx} = 6x, \ u = 3x^2 - 1, \ 3x^2 = u + 1, \ dx = \frac{du}{6x}$	
				$\int \sqrt{6x^2 - 9x^4}$	when $x = \frac{1}{\sqrt{3}}$, $u = 0$ and when $x = 0$, $u = -1$ 1	
					• Substitute	
					$\int_{-1}^{0} \frac{6x}{\sqrt{2(u+1) - (u+1)^2}} \cdot \frac{du}{6x}$	
					• Simplify	
					$\int_{-1}^{0} \frac{1}{\sqrt{2u+2-(u^2+2u+1)}} du$	
					Further simplification	
					• Integrate Int	
					$\left[\sin^{-1}u\right]_{-1}^{0}$	
					• Evaluate	
					$\sin^{-1}(0) - \sin^{-1}(-1)$ 1	
					$-\frac{3\pi}{2}$ 1	7

Total 100 marks

[END OF MARKING SCHEME]

Page 21

perfectpapers

Analysis No Question Illustrations of evidence for awarding each mark Marks Unit / Marks at levels Outcome A/B С The points A(1, 3, 0), B(-2, 0, 5) and C(2, -3, -1) Α 3a Vectors all lie in the plane \prod . Vector product of two vectors in the 4 Calculate the equation of plane \prod . (a)• plane to get a normal vector. $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ -3 & -3 & 5 \\ 1 & -6 & -1 \end{vmatrix}$ 1 Accuracy (33` $\underline{n} = \begin{vmatrix} 2 \end{vmatrix}$ 21 1 • Use scalar product $\begin{pmatrix} x-1 \\ y-3 \end{pmatrix}$ (33) $n \cdot \overrightarrow{AP} = \begin{vmatrix} 35 \\ 2 \\ \cdot \end{vmatrix}$ 21 z - 01 Solution ٠ 33x + 2y + 21z = 361 4

Additional Questions for unit 3

[MATH(AH)10 - MS] http://store.perfectpapers.net

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
A.(Cont) (b)			5	Calculate the point of intersection between the line $L: \frac{x+3}{2} = y-5 = \frac{-z}{3}$ and the plane Π and the size of the angle between <i>L</i> and Π .	• Converting equation of line into parametric form and substituting values in equation of plane $x = 2t - 3, y = t + 5, z = -3t \therefore 5t = 125$ 1 • Point of intersection t = 25 so point of intersection is (47, 30, -75) 1 • Use scalar product correctly $n \cdot l = \begin{pmatrix} 33 \\ 2 \\ 21 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = 5$ • Calculate angle between line and normal vector $\theta \circ = \cos^{-1}\left(\frac{5}{ n l }\right)$	
					$= \cos^{-1} \left(\frac{5}{\sqrt{1534 \times \sqrt{14}}} \right)$ = 88 \cdot 0 ° 1 • Solution angle between line and plane is 90° - 88 \cdot 0° = 2 \cdot 0° 1	5

perfectpapers

	A	nalysis				
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
В.	3c Sequences & Series	5		Find the Maclaurin expansion for $f(x) = e^{\sin x}$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ as far as the x^4 term.	• Expansion for exp(x) $e^{x} \approx 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24}$ 1 • Expansion for sin x $\sin x \approx x - x^{3}$ 1 • Substitute sin x expansion into exp(x) expansion $e^{x} \approx 1 + (x - x^{3}) + \frac{(x - x^{3})^{2}}{2} + \frac{(x - x^{3})^{4}}{6} + \frac{(x - x^{3})^{4}}{24}$ 1 • Simplify $e^{\sin x} \approx 1 + x - x^{3} + \frac{x^{2} - 2x^{4}}{2} + \frac{x^{3} + \dots}{6} + \frac{x^{4} + \dots}{24}$ 1 • Solution $e^{\sin x} \approx 1 + x + \frac{x^{2}}{2} - \frac{5x^{3}}{6} - \frac{23x^{4}}{24}$ 1	5

perfectpapers

	Analysis					
No	Unit /	Marks at levels		Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
С.	3b Matrices		4	Given that for matrix A, $A^2 = 5A - 2I$ where I is the corresponding identity matrix, find the integers x and y such that $A^4 = xA + yI$	• Square expression for A squared $A^{4} = (5 A - 2 I) (5 A - 2 I)$ $= 5 A^{2} - 10 A I - 10 A I + 4 I^{2} $ • Know that $AI = A$ and that I squared $= I$ $5A^{2} - 20A + 4I $ • Substitute in expression for A squared 5(5A - 2I) - 20A + 4I • Solution $5A - 6I \therefore x = 5 \text{ and } y = -6 $ 1	4

Page 25

perfectpapers

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
D.	3d Differential Equations	5	2	Obtain the general solution of the differential equation $\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} - 15y = 8\cos x$	 Form and solve the auxiliary equation Aux.Eqⁿ: m² + 2m - 15 = 0 ∴ m = -5, 3 1 Derive the complementary function Comp.Funcⁿ: y = Ae^{-5x} + Be^{3x} 1 Define the particular integral and differentiate twice Part.Intg: y = C cos x + D sin x	
					$-15(C\cos x + d\sin x) = 8\cos x \qquad 1$ • Equate coefficients $2D - 16C = 8 and -16D - 2C = 0 \qquad 1$ • Find values for constants $C = -\frac{8}{17} and D = \frac{1}{17}$	
					• State the general solution Gen.Sol ⁿ : $y = Ae^{-5x} + Be^{3x} - \frac{8}{17}\cos x + \frac{1}{17}\sin x$ 1	7

perfectpapens

	Analysis					
No	Unit /	Marks	at levels	Question	Illustrations of evidence for awarding each mark	Marks
	Outcome	A/B	С			
D.(Cont)			3	Hence find the particular solution given that	Differentiate general solution	
				$\frac{dy}{dx} = 0$ and $y = 2$, when $x = 0$.	$\frac{dy}{dx} = -5Ae^{-5x} + 3Be^{3x} + \frac{8}{17}\sin x - \frac{1}{17}\cos x$	
					• Substitute <i>x</i> = 0 into general solution and into its derivative	
					When $x = 0$, $y = A + B - \frac{8}{17} = 2$	
					and $\frac{dy}{dx} = -5A + 3B - \frac{1}{17} = 0$ 1	
					• Solve to find constants and state particular	
					solution	
					$A = \frac{125}{136}$ and $B = \frac{211}{136}$ so particular solution	
					is	
					$y = \frac{125}{136}e^{-5x} + \frac{211}{136}e^{3x} - \frac{8}{17}\cos x + \frac{1}{17}\sin x$	3

Total 28 marks

[END OF MARKING SCHEME FOR ADDITIONAL QUESTIONS]

Page 27

